

# 1. Армирование сечений железобетонных элементов

В этом режиме выполняется подбор арматуры в элементах железобетонных конструкций по предельным состояниям первой и второй групп в соответствии с требованиями СНиП 2.03.01-84\* «Бетонные и железобетонные конструкции».

Расчет производится для железобетонных конструкций, выполняемых из тяжелого, мелкозернистого и легкого бетонов с применением арматурной стали классов A-I, A-II, A-III, A-IV, A-V, A-VI, A400C, A500C и арматурной проволоки класса Вр-I.

Библиотека процедур подбора арматуры содержит четыре модуля:

- **модуль 1** (Стержень 2D) для армирования плоских стержневых железобетонных элементов прямоугольного, таврового, двутаврового и кольцевого сечений по предельным состояниям первой и второй групп;
- модуль 2 (Стержень 3D) для армирования пространственных стержневых железобетонных элементов прямоугольного, таврового, двутаврового и кольцевого сечений по предельному состоянию первой группы;
- **модуль 11** (**Плита. Оболочка**) для армирования элементов плит и оболочек по предельным состояниям первой и второй групп.
- модуль 21 (Балка-стенка) для армирования элементов балок-стенок по предельным состояниям первой и второй групп.

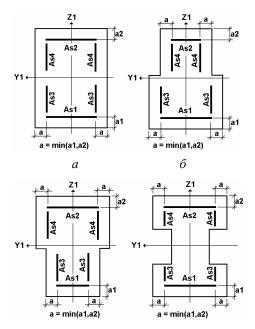
Исходными данными для работы постпроцессора являются:

- геометрия армируемого сечения;
- расчетные сочетания усилий (РСУ);
- информация о марке бетона, классе арматуры, расстояние до центра тяжести арматуры и т.п.

Подбор арматуры в стержневых элементах (модули 1 и 2) выполняется в соответствии с методикой, изложенной в СНиП 2.03.01-84\*. Так как в нормах не оговорена процедура проверки арматуры в элементах оболочек, плит и т.п., то в комплексе **SCAD** для этого использована методика, предложенная Н.И. Карпенко.

Результатом работы постпроцессора являются площади «размазанной» арматуры а также количество и площадь сечения (для пластин — диаметры) арматурных стержней. Результаты могут быть представлены в виде таблиц и (или) графических материалов.

## 1.1. Ограничения реализации


При использовании постпроцессора следует учитывать некоторые ограничения реализации:

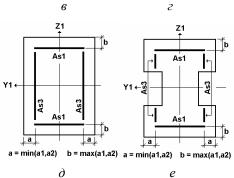
- не реализован расчет элементов из ячеистого, поризованного и напрягающего бетонов;
- не выполняется расчет предварительно напряженных железобетонных элементов;
- не выполняется расчет элементов по предельному состоянию по деформациям;
- набор сечений ограничен прямоугольником, тавром, двутавром и кольцевым сечением;
- не контролируется предусмотренное п. 16.17 СНиП 2.03.01-84\* ограничение на диаметр арматуры при бетонах низких марок (максимальный диаметр арматуры задается пользователем);
- не контролируется предельная ширина полок таврового и двутаврового сечений (расчетная ширина полок задается пользователем в соответствии с требованиями п. 3.16 СНиП 2.03.01-84\*);
- не учитывается коэффициент  $\gamma_{s5}$  для высокопрочной арматуры классов A-IV, A-V, A-VI, B-11, BP-11, K7, K-19 при напряжениях выше условного предела текучести (табл. 24 СНиП 2.03.01-84\*);
- не производится расчет по закрытию трещин при проверке по второму предельному состоянию;
- не выполняется расчет на выносливость.



# 1.2. Общие сведения о модулях армирования

#### Модуль 1 (Стержень 2D)




Предназначен для подбора арматуры в сечениях стержневых железобетонных элементов по предельным состояниям первой и второй групп (прочность и трещиностойкость). Модуль рассчитывает стержни прямоугольного, таврового, двутаврового и кольцевого сечений на изгиб и внецентренное сжатие (растяжение) с кручением. В сечении могут действовать такие силовые факторы:

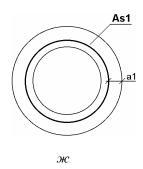
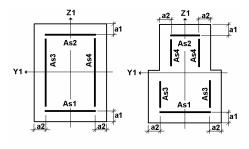
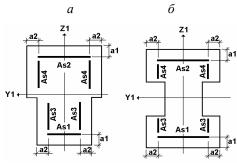
- нормальная сила *N*;
- крутящий момент  $M_k$ ;
- перерезывающая сила  $Q_z$ ;
- изгибающий момент  $M_{v}$ .

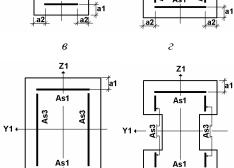
Результатом работы модуля являются площади симметричной и несимметричной продольной арматуры, площадь и шаг поперечной арматуры, а также соответствующий им набор арматурных стержней.

На рис. 1.2-1,a-2 для различных типов сечений приведено расположение и идентификация несимметричной, а на рис. 1.2- $1,\partial$ -ж — симметричной продольной арматуры. Естественно, что симметричная арматура может быть подобрана только для сечений симметричных относительно оси  $Y_1$ .

Схема расположения поперечной арматуры для сечений различного типа приведена в разделе 1.3.





Рис. 1.2-1. Виды сечений с несимметричным (а–г) и симметричным (д–ж) расположением продольной арматуры



## Модуль 2 (Стержень 3D)







е

д

Предназначен для подбора арматуры в сечениях стержневых железобетонных элементов по предельным состояниям первой группы (прочность). Модуль рассчитывает стержни прямоугольного, таврового, двутаврового и кольцевого сечений на косой изгиб и косое внецентренное сжатие (растяжение) с кручением. Рассматривается пространственная работа стержня. При этом в сечении действуют такие силовые факторы:

- нормальная сила *N*;
- крутящий момент  $M_k$ ;
- перерезывающие силы  $Q_z$ ,  $Q_y$ ;
- изгибающие моменты  $M_{\nu}$ ,  $M_{z}$ .

В результате работы модуля получаются площадь продольной, площадь и шаг поперечной арматуры, а также соответствующий им набор арматурных стержней.

На рис. 1.2-2,a–z для различных типов сечений приведено расположение и идентификация несимметричной, а на рис. 1.2-2,  $\partial$ –ж — то же для симметричной продольной арматуры. Симметричная арматура может быть подобрана только для сечений, симметричных относительно оси  $Y_1$ .

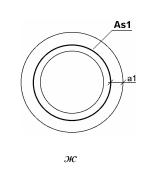



Рис. 1.2-2. Виды сечений с несимметричным (а–г) и симметричным (д–ж) расположением продольной арматуры



#### Модуль 11 (Плита. Оболочка)

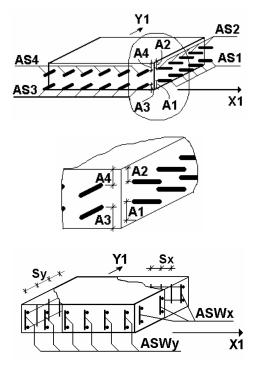



Рис. 1.2-3. *Армирование элементов* железобетонной оболочки

Предназначен для подбора арматуры железобетонных оболочек и плит по предельным состояниям первой и второй групп (прочность и трещиностойкость). Подбор выполняется с учетом следующих силовых факторов, вычисленных в центре элемента:

- нормальные напряжения  $N_x$ ,  $N_y$  (только в оболочках);
- касательные напряжения  $T_{xy}$  (только в оболочках);
- крутящий момент  $M_{xy}$ ;
- перерезывающие силы  $Q_x$ ,  $Q_y$ ;
- изгибающие моменты  $M_x$ ,  $M_v$ .

В результате работы модуля вычисляются площади верхней и нижней продольной арматуры, а также площади и шаги поперечной арматуры. На рис. 1.2-3 для сечений элемента железобетонной оболочки приведено расположение и идентификация верхней и нижней продольной арматуры, а также поперечной арматуры.

Обратите внимание, что расстояние до центра тяжести арматуры может задаваться как двумя, так и четырьмя числами. В первом случае значение  $A_1$  соответствует арматуре вдоль оси X, а  $A_2$  — вдоль оси Y. Во втором случае  $A_1$  и  $A_2$  задаются для арматуры, расположенной вдоль оси X, а  $A_3$  и  $A_4$  — для арматуры вдоль оси Y.

# Модуль 21 (Балка-стенка)

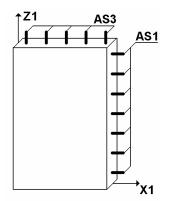



Рис. 1.2-4. *Армирование элементов* балки-стенки

Предназначен для подбора арматуры железобетонных балок-стенок (плоское напряженное состояние) по предельным состояниям первой и второй групп (прочность и трещиностойкость). Модуль рассчитывает элемент железобетонной балки-стенки на действие таких силовых факторов, вычисленных в центре элемента:

- нормальные напряжения  $N_x$ ,  $N_z$ ;
- касательные напряжения  $T_{xz}$ .

В результате работы модуля вычисляются площади арматуры, работающей в сечениях, ортогональных к локальным осям местной системы координат  $X_1$  и  $Z_1$ . На рис. 1.2-4 для сечений элемента железобетонной балки-стенки показано расположение и идентификация подбираемой арматуры.



# Таблица 1-1. Результаты подбора арматуры в стержневых элементах

| N элем. | N<br>сеч. | Тип    | Площадь продольной арматуры (см.кв) |                    |          |          |         |          |         |      |      | Ширина<br>раскрытия<br>трещины |       | Площадь поперечной арматуры, максимальный шаг хомутов |       |     |  |
|---------|-----------|--------|-------------------------------------|--------------------|----------|----------|---------|----------|---------|------|------|--------------------------------|-------|-------------------------------------------------------|-------|-----|--|
|         |           |        |                                     | несимметричной сиг |          |          |         |          | метричн | юй   | MM   |                                | см.кв | СМ                                                    | см.кв | СМ  |  |
|         |           |        | AS1                                 | AS2                | AS3      | AS4      | %       | AS1      | AS3     | %    | ACR1 | ACR2                           | ASW1  | Шаг                                                   | ASW2  | Шаг |  |
|         |           |        |                                     |                    |          |          |         |          |         |      |      | •                              |       |                                                       |       |     |  |
| ГР      | УПП       | АД     | АННЫ                                | X 1                |          |          |         |          |         |      |      |                                |       |                                                       |       |     |  |
| MOZ     | ДУЛЬ      | APMI   | ИРОВАН                              | ИЯ 2 (3            | D - прос | транстве | нный ст | гержень) |         |      |      |                                |       |                                                       |       |     |  |
| БЕТ     | ОН В      | 25     | APMATS                              | РА: ПРО            | ЭДОЛЬН   | II-A RAI | н пс    | ПЕРЕЧІ   | I-A RAI | I    |      |                                |       |                                                       |       |     |  |
| Мак     | симал     | ьно до | пустимь                             | ій диаме           | тр 40 мм | Í        |         |          |         |      |      |                                |       |                                                       |       |     |  |
| СЕЧЕ    | ЕНИЕ      | ПРЯП:  | моугол                              | ІЬНИК              | B=50.0   | ) H=50   | 0.0 (см | )        |         |      |      |                                |       |                                                       |       |     |  |
|         |           |        | . т. армат                          |                    |          |          |         | 1        |         |      |      |                                |       |                                                       |       |     |  |
| 12079   | 1         | Μ      | 19.3                                | 19.3               | 12.3     | 12.3     | 2.72    | 19.3     | 12.3    | 2.72 |      |                                | 0.35  | 10                                                    | 0.29  | 10  |  |
|         |           | S      | 2×10.5                              | 2 ×10.5            |          |          |         | 2×10.5   |         |      |      |                                |       |                                                       |       |     |  |
|         |           | Ö      | 1 ×6.42                             | 1 ×6.42            | 1 ×4.11  | 1 ×4.11  |         | 1 ×6.42  | 1 ×4.11 |      |      |                                |       |                                                       |       |     |  |
|         |           | Ø      | 2 Ø40                               | 2 Ø40              |          |          | 3.28    | 2 Ø40    |         | 3.28 |      |                                |       |                                                       |       |     |  |
|         |           | Ø      | 1 Ø32                               | 1 Ø32              | 1 Ø25    | 1 Ø25    |         | 1 Ø32    | 1 Ø25   |      |      |                                |       |                                                       |       |     |  |
|         | 2         | Σ      | 15.8                                | 15.8               | 14.8     | 14.8     | 2.63    | 15.8     | 14.8    | 2.63 |      |                                | 0.35  | 10                                                    | 0.29  | 10  |  |
|         |           | K      | 0.10                                | 0.10               | 0.10     | 0.10     |         | 0.10     | 0.10    |      |      |                                |       |                                                       |       |     |  |
|         |           | s      | 2×10.2                              | 2×10.2             |          |          |         | 2×10.2   |         |      |      |                                |       |                                                       |       |     |  |
|         |           | ٠Ş٠    | 1 ×5.26                             | 1 ×5.26            | 1 ×4.92  | 1 ×4.92  |         | 1 ×5.26  | 1 ×4.92 |      |      |                                |       |                                                       |       |     |  |
|         |           | Ø      | 2 Ø36                               | 2 Ø36              |          |          | 2.81    | 2 Ø36    |         | 2.81 |      |                                |       |                                                       |       |     |  |
|         |           | ø      | 1 Ø28                               | 1 Ø28              | 1 Ø28    | 1 Ø28    |         | 1 Ø28    | 1 Ø28   |      |      |                                |       |                                                       |       |     |  |
|         | 3         | Ξ      | 12.4                                | 12.4               | 18.0     | 18.0     | 2.62    | 12.4     | 18.0    | 2.62 |      |                                | 0.35  | 10                                                    | 0.29  | 10  |  |
|         |           | K      | 0.10                                | 0.10               | 0.10     | 0.10     |         | 0.10     | 0.10    |      |      |                                |       |                                                       |       |     |  |
|         |           | .s.    | 2×10.1                              | 2×10.1             |          |          |         | 2×10.1   |         |      |      |                                |       |                                                       |       |     |  |
|         |           | ٠ś٠    | 1 ×4.14                             | 1 ×4.14            | 1 ×6.00  | 1 ×6.00  |         | 1 ×4.14  | 1 ×6.00 |      |      |                                |       |                                                       |       |     |  |
|         |           | ø      | 2 Ø36                               | 2 Ø36              |          |          | 2.70    | 2 Ø36    |         | 2.70 |      |                                |       |                                                       |       |     |  |
|         |           | ٠ø٠    | 1 Ø25                               | 1 Ø25              | 1 Ø28    | 1 Ø28    |         | 1 Ø25    | 1 Ø28   |      |      |                                |       |                                                       |       |     |  |



# 1.3. Чтение результатов расчета

#### модуль армирования 1 (Стержень 2D)

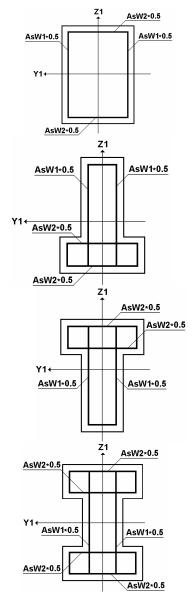



Рис. 1.3-1. Выдача результатов по поперечной арматуре в стержнях

В таблице с результатами расчета (табл.1-1) информация для каждого сечения элемента (или унифицированной группы элементов) выводится в нескольких строках. В столбце **Тип** каждой строки размещаются следующие пиктограммы, указывающие на тип данных, помещенных в строку:

суммарные площади продольной арматуры несимметричном (AS1, AS2, AS3, AS4) и симметричном (AS1, AS3) армировании (с учетом арматуры, воспринимающей действие крутящего момента — К и дополнительной арматуры из расчета по трещиностойкости — Т), проценты армирования сечения при симметричном и несимметричном армировании, ширину непродолжительного (ACR1) продолжительного (ACR2) раскрытия трещин, суммарную площадь поперечной арматуры, параллельной оси Z1 (с учетом арматуры, воспринимающей действие крутящего момента, и дополнительной арматуры из расчета по трещиностойкости) — ASW1 и максимальный шаг хомутов, а также аналогичные данные для арматуры, параллельной оси Y1 (ASW2, шаг);

<u>К</u> — площадь арматуры, необходимая для восприятия действия крутящего момента (входит в  $\overline{\underline{\Sigma}}$ );

Т — площадь продольной и поперечной арматуры, необходимая для обеспечения трещиностойкости (входит в  $\Sigma$ );

— в поле AS1 выдается площадь угловых стержней по нижней стороне сечения, а в поле AS2 — по верхней стороне сечения;

— для каждого вида арматуры (AS1-AS4) выводятся количество и площадь промежуточных стержней по каждой стороне сечения (если арматура отсутствует, то строка не выводится);

— в поле AS1 выдаются диаметры угловых стержней по нижней стороне сечения, а в поле AS2 — по верхней стороне сечения;

— для каждого вида арматуры (AS1-AS4) выводятся количество и диаметры промежуточных стержней по каждой стороне сечения (если арматура отсутствует, то строка не выводится).

В строках, пиктограммы которых включают символ S, результаты представлены в виде  $N{\times}A$ , где N — количество стержней, A – площадь сечения одного стержня.

В строках, пиктограммы которых включают символ  $\emptyset$ , результаты представлены в виде  $N \emptyset D$ , где N — количество стержней, D — диаметр одного стержня.

Если сортамент арматуры исчерпан, то в соответствующих позициях таблицы выводятся значения площади арматуры.

Если расчеты на кручение и трещиностойкость не выполнялись или арматура, подобранная по прочности обеспечивает трещиностойкость сечения и сопротивление кручению, то строки, помеченные пиктограммами  $\overline{K}$  и  $\overline{T}$ , не выводятся.



В результатах расчета величина площади поперечной арматуры, воспринимающей действие крутящего момента, печатается вычисленной для двух стержней, расположенных в сечении элемента. Таким образом, площадь одного стержня можно определить как ASW \* 0.5 (рис. 1.3-1).

### модуль армирования 2 (Стержень 3D)

Результаты расчета для каждого сечения в конечных элементах (или унифицированной группе КЭ) выводятся по тем же правилам, что и для **Модуля армирования 1** (табл.1-1).

Расчет по трещиностойкости не производится.

Таблица 1-2. Результаты подбора арматуры в плоскостных элементах

| N элем. | N<br>сеч. | Тип                              | Площадь продольной арматуры (см.кв) |          |                |          |         |          |              |            |      | Ширина раскрытия трещины |       | Площадь поперечной арматуры, максимальный шаг хомутов |       |     |  |  |
|---------|-----------|----------------------------------|-------------------------------------|----------|----------------|----------|---------|----------|--------------|------------|------|--------------------------|-------|-------------------------------------------------------|-------|-----|--|--|
|         |           |                                  |                                     | неси     | несимметричной |          |         |          | симметричной |            |      | MM                       |       | СМ                                                    | см.кв | CM  |  |  |
|         |           |                                  | AS1                                 | AS2      | AS3            | AS4      | %       | AS1      | AS3          | %          | ACR1 | ACR2                     | ASW1  | Шаг                                                   | ASW2  | Шаг |  |  |
|         |           |                                  |                                     |          |                |          |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
| ГР У    | УПП       | АД                               | АННЫ                                | X 1      |                |          |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
| MOJ     | ДУЛЬ      | APMI                             | ИРОВАН                              | I) 11 RN | Ілита. О       | болочка) | ı       |          |              |            |      |                          |       |                                                       |       |     |  |  |
| БЕТ     | OH B      | 30 A                             | APMATY                              | РА: ПРО  | ОДОЛЬН         | АЯ А40   | OC I    | ІОПЕРЕ   | ЧНАЯ А       | <b>∖-I</b> |      |                          |       |                                                       |       |     |  |  |
| Pacc    |           |                                  | . т. армат                          |          |                |          | 3 = 0.0 | A4 = 0.0 | (см)         |            |      |                          |       |                                                       |       |     |  |  |
|         | T         | ОЛЩ                              | ИНА ЭЛІ                             | EMEHT/   | A: H=27.0      | ) см     |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
| Шаг     | прод      | ольной                           | і арматур                           | ы 20 см  |                |          |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
| Мак     | симал     | ьно до                           | пустимь                             | ій диаме | гр 18 мм       |          |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
| 2       | 1         | $\emptyset_X$                    | 5 Ø18                               | 5 Ø16    |                |          |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
|         |           | $\overline{\Sigma_{\mathrm{X}}}$ | 10.9                                | 8.93     |                |          | 0.84    |          |              |            | 0.28 | 0.28                     |       |                                                       |       |     |  |  |
|         |           | TX                               | 3.67                                | 3.50     |                |          |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
|         |           | Øy                               |                                     |          | 5 Ø22          | 5 Ø20    |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
|         |           | Σγ                               |                                     |          | 17.6           | 13.7     | 1.33    |          |              |            |      |                          |       |                                                       |       |     |  |  |
|         |           | TY                               |                                     |          | 4.96           | 5.77     |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
| 671     | 1         | Øx                               | 5 Ø40                               | 5 Ø22    |                |          |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
|         |           | $\overline{\Sigma_{\rm X}}$      | 60.0                                | 15.8     |                |          | 4.59    |          |              |            | 0.29 | 0.29                     | #4.86 | 14                                                    |       |     |  |  |
|         |           | TX                               | 8.08                                |          |                |          |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
|         |           | Øy                               |                                     |          | 5 Ø28          | 5 Ø25    |         |          |              |            |      |                          |       |                                                       |       |     |  |  |
|         |           | Σγ                               |                                     |          | 26.0           | 23.2     | 2.99    |          |              |            |      |                          |       |                                                       |       |     |  |  |
|         |           | TY                               |                                     |          | 8.60           |          |         |          |              |            |      |                          |       |                                                       |       |     |  |  |

#### Модуль армирования 11 (Плита. Оболочка)

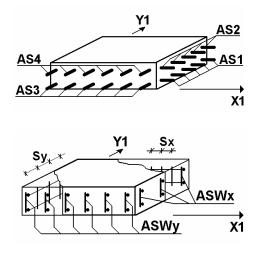



Рис. 1.3-2. Выдача результатов по

В таблице с результатами расчета (табл.1-2) информация для каждого элемента (или унифицированной группы элементов) выводится в нескольких строках. В столбце **Тип** каждой строки размещаются следующие пиктограммы, указывающие на тип данных, помещенных в строку:

— результаты подбора арматуры, расположенной вдоль оси  $X_1$ ; в поле AS1 выдаются количество и диаметр стержней по нижней стороне сечения, а в поле AS2 — по верхней стороне сечения;

 $\overline{\Sigma_X}$  — суммарная площадь сечения продольной арматуры, подобранной по прочности и трещиностойкости вдоль оси  $X_1$  (AS1 — нижняя, AS2 — верхняя);

ТХ — площадь сечения продольной арматуры (AS1 — нижняя, AS2 — верхняя), подобранной по трещиностойкости вдоль оси  $X_1$  (входит в  $\Xi$ );



поперечной арматуре для плит и оболочек

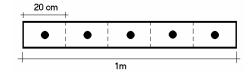



Рис. 1.3-3. Пример размещения дискретной арматуры при заданном шаге 20 см

подобранной по прочности и трещиностойкости вдоль оси  $Y_1$  (AS3 — нижняя, AS4 — верхняя);

TY — площадь сечения продольной арматуры (AS3 — нижняя, AS4 — верхняя), подобранной по трещиностойкости вдоль оси  $Y_1$  (входит в  $\Xi$ );

Если расчет по трещиностойкости не проводится, то строки отмеченные пиктограммами  $\overline{TX}$  и  $\overline{TY}$  будут отсутствовать.

Площадь сечения арматуры для каждого конечного элемента плиты (или унифицированной группы КЭ) определяется для сечения шириной 1 м для заданной толщины плиты в соответствии с усилиями.

Результаты подбора суммарной поперечной арматуры по прочности и трещиностойкости (площадь арматуры на один погонный метр и шаг) печатаются в строках отмеченных пиктограммами  $\boxed{\Sigma}$  по направлениям  $X_1$  и  $Y_1$  (ASW1, шаг и ASW2, шаг соответственно) (рис. 1.3-2). При наличии в составе суммарной дополнительной арматуры подобранной по условиям трещиностойкости ее площадь выводится под пиктограммой  $\boxed{TX}$ .

В строках, пиктограммы которых включают символ  $\emptyset$ , результаты представлены в виде  $N\emptyset D$ , где N — количество стержней, D — диаметр одного стержня.

Если сортамент диаметров арматуры исчерпан для заданного шага, то в соответствующих позициях таблицы выводится значение площади арматуры.

# Модуль армирования 21 (Балка-стенка)

Результаты армирования выводятся по тем же правилам, что и для **Модуля армирования 11**. Поскольку армирование выполняется в один слой в срединной плоскости балки-стенки, то результаты подбора арматуры вдоль оси  $X_1$  заносятся в столбец **AS1** в строки  $\overline{\Sigma}$  и  $\overline{\Gamma}X$ , а вдоль оси  $Z_1$  — в столбец **AS3**.

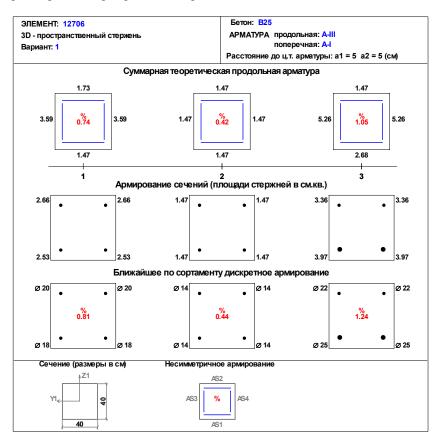
Площадь сечения арматуры для каждого КЭ балки стенки (или унифицированной группы КЭ) в соответствии с усилиями определяется для сечения, перпендикулярного соответственно осям  $X_1$  и  $Z_1$  местной системы координат элемента шириной 1м для заданной толщины балки-стенки.

#### Поперечная арматура

Для всех модулей армирования, если максимальный шаг хомутов, воспринимающих действие поперечной силы, меньше 10 см, то в графах поперечного армирования выводится площадь хомутов при этом шаге и величина шага.

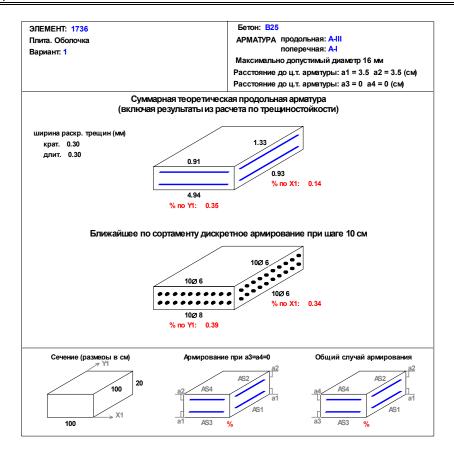
Если перед значением площади хомутов выводится символ «#», то значит максимальный шаг хомутов больше 10 см, и на печать выводится площадь хомутов при шаге 10 см и величина максимального шага. Если величина максимального шага хомутов больше 60 см, то она будет отсутствовать в таблице.

Чтобы найти площадь при заданном шаге, надо площадь хомутов при шаге 10 см разделить на 10 и умножить на заданный шаг.


Если шаг хомутов назначен пользователем, то в графах с результатами подбора поперечной арматуры выводятся площадь хомутов при этом шаге и величина заданного шага.

#### Дискретное армирование

По имеющимся результатам подбора арматуры («размазанная» арматура) в программе имеется возможность посмотреть возможное расположение и количество дискретной арматуры в каждом элементе. Для оболочечных (плитных) элементов количество дискретной арматуры на 1 м.п. зависит от выбранного шага расположения стержней.




Пример дискретного армирование стержневого элемента:



Пример дискретного армирование оболочечного (плитного) элемента:



